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MODEL CHECKING IS REFINEMENT�

| RELATING B�UCHI TESTING AND LINEAR{TIME TEMPORAL LOGIC |

RANCE CLEAVELANDy AND GERALD L�UTTGENz

Abstract. This paper develops a semantic foundation for reasoning about reactive systems speci�cations

featuring combinations of labeled transition systems and formulas in linear{time temporal logic (LTL). Using

B�uchi automata as a semantic basis, the paper introduces two re�nement preorders based on DeNicola and

Hennessy's notion of may{ and must{testing. Alternative characterizations for these relations are provided

and used to show that the new preorders are conservative extensions of the traditional DeNicola and Hennessy

preorders. The paper then establishes a tight connection between LTL formula satisfaction and the B�uchi

must{preorder. More precisely, it is shown that a labeled transition system satis�es an LTL formula if

and only if it re�nes an appropriately de�ned B�uchi automaton that can be constructed from the formula.

Consequently, the B�uchi must{preorder allows for a uniform treatment of traditional notions of process

re�nement and model checking. The implications of the novel theory are illustrated by means of a simple

example system, in which some components are speci�ed as transition systems and others as LTL formulas.

Key words. B�uchi automata, temporal logic, process algebra, re�nement preorder, speci�cation, testing

Subject classi�cation. Computer Science

1. Introduction. Two schools of thought have emerged in the �eld of formal methods for designing and

reasoning about reactive systems. The �rst advocates the use of assertional approaches, in which di�erent

formalisms are employed for describing system speci�cations and implementations. Typically, implementa-

tions are given in an operational, programming{oriented notation, while speci�cations are presented in a

declarative, logical style. The semantics of assertions is then applied to determine whether an implementa-

tion satis�es its speci�cation. An example for this paradigm is model checking [5, 31, 36], where temporal

logics are used to specify properties that systems modeled by Kripke structures or labeled transition sys-

tems should satisfy. The second school favors re�nement approaches in which a single formalism that is

equipped with a re�nement relation is employed to represent a system's speci�cation and implementation.

An implementation is deemed correct if it re�nes its speci�cation. Process algebras [19, 27] fall into this clas-

si�cation, with traditional re�nement relations being either behavioral equivalences, e.g., bisimulation [27],

or preorders, e.g., based on failures or testing [3, 11].

Both paradigms have advantages and disadvantages. Assertional approaches typically allow the formu-

lation of loose speci�cations which a�ord implementors great latitude in their design decisions; but they have

di�culty in supporting compositional reasoning, owing to the fact that the implementation and speci�cation
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languages are di�erent. On the other hand, compositionality is a hallmark of re�nement approaches, since

one may typically re�ne one part of a system design independently of others. However, re�nement{based

speci�cations are often seen as too detailed and, hence, too constraining for implementors. A formalism that

marries the bene�ts of the two styles would have obvious bene�ts, as the 
exibility of assertional speci�ca-

tions could be combined with the virtues of re�nement{oriented compositionality. Such a framework would

for example permit a project manager to give loose, assertional speci�cations of di�erent system components

to di�erent design teams. If the the composition of the abstract speci�cations have been determined to

satisfy a desired global system speci�cation, the individual, detailed operational component designs returned

by the groups would be guaranteed to \compose" correctly.

The goal of this paper is to develop a uni�ed semantic theory for heterogeneous system speci�cations

featuring mixtures of labeled transition systems and formulas in linear{time temporal logic (LTL). Using B�uchi

automata [34] and the testing framework of DeNicola and Hennessy [11] as starting points, we approach this

problem by developing B�uchi may{ and must{preorders that relate B�uchi processes on the basis of their

responses to B�uchi tests. For these re�nements preorders, we provide alternative characterizations and

employ them for proving conservative{extension results regarding DeNicola and Hennessy's testing theory.

We then establish the key result of this paper, namely that LTL model checking may be reduced to re�nement

checking. More precisely, a B�uchi process B� can be constructed from an LTL formula � in such a way that

a labeled transition system satis�es � if and only if it is larger than B� for the B�uchi must{preorder. Finally,

we show that our must{preorder is compositional for a parallel composition operator that is inspired by the

one of CCS [27], and illustrate our technical results by a small example featuring the heterogeneous design

of a generic communication protocol.

The remainder of this paper is structured as follows. The next section motivates our work by means

of an example. Section 3 develops a theory of B�uchi testing, including characterizations of the preorders

under consideration and their relation to well{established testing preorders. The connection between B�uchi

must{testing and LTL model checking is investigated in Section 4. The speci�cation framework is then

applied to the example in Section 5, while Section 6 discusses related work. Finally, Section 7 contains our

conclusions and directions for future work. The proofs of our main theorems are given in the appendix.

2. Motivating Example. As motivation for the work in this paper, consider the design of a very

simple communication protocol given in Figure 2.1.

G ( send?

)
X(put!     (put! U gack?))

pack!

recv!get?

get!gack!

pack?

get

pack

put?
put

gack

recvsend

pack? put?

ReceiverSender Medium

Fig. 2.1. A simple communication protocol

The architecture of the protocol has already been �xed by the system designers and consists of a sender

Sender, a medium Medium, and a receiver Receiver. The components communicate with the protocol's

environment and among themselves via channels. In case of component Sender, these are the channels
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send, put, and gack (get acknowledgment). We use the notation ch? and ch! to indicate the reception

and sending of a message from and to channel ch, respectively, and refer to these activities as actions.

Each component in turn has its own speci�cation. Receiver and Medium are given as labeled transition

systems, re
ecting the fact that their designs are relatively advanced. The Sender, in contrast, is speci�ed

assertionally by an LTL formula, i.e., on an abstract speci�cation level. The formula states that whenever

a send? action occurs during an execution sequence of the sender, the remainder of the execution must

begin with a sequence of put! actions followed by a gack? action.1 Finally, the overall speci�cation of the

protocol's required behavior may be given by the following LTL formula.

Spec =df G (send? ! (F recv!))

This formula encodes a certain reliability guarantee of the protocol regarding the eventual delivery of mes-

sages. More precisely, it dictates that in any sequence of actions which the system performs, whenever a

send? action occurs, a recv! action eventually follows. An obvious question that a designer would be in-

terested in is whether the speci�cation of the sender is \strong enough" to ensure that the protocol satis�es

Spec. The theory developed in this paper provides the semantic framework for answering this question.

gack?

send? put!

gack

send

put

Fig. 2.2. Re�nement of Sender

A positive answer should be preserved when Sender is re�ned by a

labeled transition system satisfying its LTL formula given in Figure 2.1,

such as the one depicted on the right. For this to be the case, the un-

derlying re�nement relation must be compatible with LTL satisfaction.

Moreover, it must be compositional, since Sender cannot be considered

in isolation, but is just one component of a larger system. Again, the

theory to be developed will support such a notion of re�nement.

3. A Theory of B�uchi Testing. In this section we extend the testing theory of DeNicola and Hen-

nessy [11], which was developed for labeled transition systems in a process{algebraic setting [11], to B�uchi

automata. Traditional testing relates labeled transition systems with respect to their responses to tests

via two preorders, the may{ and must{preorders, which distinguish whether systems may or must pass the

considered tests. The must{preorder has proved especially interesting because of various full{abstractness

results that have been established for it [26] and also because it is compositional with respect to a number

of di�erent process constructs, including the parallel operators in Milner's CCS [27] and Hoare's CSP [19].

In this paper, we use B�uchi automata as a basis for reasoning about mixed operational and assertional

speci�cations. These automata extend labeled transition systems by means of an acceptance condition for

in�nite traces. However, the traditional B�uchi semantics, which identi�es automata having the same in�nite

languages, is in general not compositional with respect to parallel composition operators, since it is insensitive

to the potential for deadlock. Our testing semantics is intended to overcome this problem. In the sequel,

we refer to B�uchi automata as B�uchi processes to emphasize that we are equipping B�uchi automata with

a di�erent semantics than the traditional one. In what follows, we �rst de�ne B�uchi processes and several

notions of traces and languages. We then introduce our notion of B�uchi testing, develop B�uchi may{ and

must{preorders, establish alternative characterizations for the preorders, and show them to be conservative

extensions of DeNicola and Hennessy's may{ and must{preorders.

1In this paper, we assume that LTL formulas are interpreted with respect to sequences of actions rather than sequences

of states, as is traditionally the case [30]. In formulas, we use actions a as atomic propositions, where a sequence of actions

satis�es proposition a if its �rst element is action a. The adaptation of the LTL semantics is straightforward (cf. Section 4).
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3.1. Basic De�nitions. Our semantic framework is de�ned relative to some alphabet A, i.e., a count-
able set of actions which does not include the distinguished unobservable, internal action � . In the sequel, we

let a; b; : : : range over A and �; �; : : : over A[f�g. B�uchi processes are distinguished from labeled transition

systems in their treatment of in�nite traces. Whereas in labeled transition systems all in�nite traces are

typically deemed possible, in B�uchi processes only those in�nite traces that go through designated B�uchi

states in�nitely often are considered actual executions.

Definition 3.1 (B�uchi process & labeled transition system). A B�uchi process is a tuple hP;�!;
p
; pi,

where P is a countable set of states, �!� P � (A[f�g)�P is the transition relation,
p � S is the B�uchi

set, and p 2 P is the start state. If
p

= P we refer to the B�uchi process as labeled transition system, in

accordance with standard terminology.

For convenience, we often write (i) p0
��! p00 instead of hp0; �; p00i 2�!, (ii) p0

��! for 9p00 2 P: p0
��! p00,

(iii) p0 �! for 9� 2 A[f�g; p00 2 P: p0
��! p00, and (iv) p0

p
for p0 2 p. If no confusion arises, we abbreviate

the B�uchi process hP;�!;
p
; pi by its start state p and refer to its transition relation and B�uchi set as �!p

and
p
p, respectively. Moreover, we denote the set of all B�uchi processes by P . Note that we do not require

B�uchi processes to be �nite{state.

Definition 3.2 (Path & trace). Let hP;�!;
p
; pi be a B�uchi process. A path � starting from state

p0 2 P is a potentially in�nite sequence (hpi�1; �i; pii)0<i�k, where k 2 N [f1g, such that k = 0, or p0 = p0

and pi�1
�i�! pi, for all 0 < i � k. We use j�j to refer to k, the length of �. If j�j = 1, we say that � is

in�nite; otherwise, � is �nite. If j�j 2 N and pj�j 6�!, i.e., pj�j is a deadlock state, path � is called maximal.

Path � is referred to as a B�uchi path if j�j =1 and jfi 2 N j pipgj =1. The (visible) trace trace(�) of �

is de�ned as the sequence (�i)i2I� 2 A� [ A1, where I� =df f0 < i � j�j j�i 6= �g.
We denote the sets of all �nite paths, all maximal paths, and all B�uchi paths starting from state p0 2 P by

��n(p
0), �max(p

0), and �B(p
0), respectively. The empty path � with j�j = 0 is symbolized by () and its empty

trace by �. We sometimes write � for trace (�) and use the notation p0
w
=)p p00 to indicate that state p0

of B�uchi process p may evolve to state p00 when observing trace w for some path � 2 ��n(p
0). Formally,

p0
w
=)p p

00 if 9� = (hpi�1; �i; pii)0<i�k 2 ��n(p): p0 = p0; pk = p00, and trace(�) = w. We may also introduce

di�erent languages for B�uchi process p.

L�n(p) =df ftrace(�) j� 2 ��n(p)g � A� �nite{trace language of p

Lmax(p) =df ftrace(�) j� 2 �max(p)g � A� maximal{trace language of p

LB(p) =df ftrace(�) j� 2 �B(p)g � A� [ A1 B�uchi{trace language of p

We also let Ip(p0) =df fa 2 A j 9p00: p0 a
=)p p

00g be the set of initial actions of p in state p0 2 P .

A key notion for any theory of testing is a system's ability to diverge, i.e., to engage in an in�nite internal

computation [17]. We say that state p0 of B�uchi process p is B�uchi divergent or simply divergent, in signs p0 *p,
if 9� 2 �B(p

0): trace(�) = �. State p0 is called w{divergent for some w = (ai)0<i�k 2 A�[A1 if one can reach

a divergent state starting from p0 when executing a �nite pre�x of w, i.e., if 9l 2 N; p00 2 P: l � k; p0
w0

=) p00,

and p00 *p, where w0 =df (ai)0<i�l. For convenience, we write Ldiv(p
0) for the divergent{trace language of p0,

i.e., Ldiv(p
0) =df fw 2 A� [ A1 j p0 *p wg. State p0 is convergent or w{convergent, in signs p0 +p and p0 +p w,

if not p0 *p and not p0 *p w, respectively. Note that a �nite trace w 2 LB(p) indicates that p is divergent

exactly after executing w. In the following, we often omit the indices of the divergence and convergence

predicates, as well as of the transition relations, whenever these are obvious from the context. Finally, we

write w � w0 for the concatenation of �nite trace w 2 A� with the �nite or in�nite trace w0 2 A� [ A1.
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3.2. Testing Theory. The traditional testing framework of DeNicola and Hennessy de�nes behavioral

preorders that relate labeled transition systems with respect to their responses to tests [11]. Tests are

employed to witness the external interactions a system may have with its environment. In our setting, a test

is a B�uchi process where certain states are considered to be success states. In order to determine whether a

system passes a test, one has to examine the �nite and in�nite computations that result when the test runs

in lock{step with the system under consideration.

Definition 3.3 (Test, computation, & success).

1. A B�uchi test hT;�!;
p
; t; Suci is a B�uchi process hT;�!;

p
; ti together with a set Suc � T of

success states. If
p
= ;, we call the test classical. The set of all B�uchi tests is denoted by T .

2. A potential computation c with respect to a B�uchi process p and a B�uchi test t is a potentially in�nite

sequence (hpi�1; ti�1i �i7�!ri hpi; tii)0<i�k, where k 2 N [ f1g, such that (1) pi 2 P and ti 2 T , for

all 0 � i � k, and (2) �i 2 A[ f�g and ri 2 fJ; I; �g, for all 0 < i � k. The relation 7�! is de�ned

by the following rules.

� hpi�1; ti�1i �i7�!J hpi; tii if �i = �; ti�1 = ti; pi�1
��!p pi; and ti�1 =2 Suc :

� hpi�1; ti�1i �i7�!I hpi; tii if �i = �; pi�1 = pi; ti�1
��!t ti; and ti�1 =2 Suc :

� hpi�1; ti�1i �i7�!� hpi; tii if �i 2 A; pi�1
�i�!p pi; ti�1

�i�!t ti; and ti�1 =2 Suc :

c is �nite, in signs jcj <1, if k 2 N. Otherwise, it is in�nite, i.e., jcj =1. The projection projp(c)

of c on p is de�ned as (hpi�1; �i; pii)i2Icp 2 �(p), where Icp =df f0 < i � k j ri 2 fJ; �gg, and the

projection projt(c) of c on t as (hti�1; �i; tii)i2Ict 2 �(p), where Ict =df f0 < i � k j ri 2 fI; �gg.
A potential computation c is called computation, if it satis�es the following properties: (1) c is

maximal, i.e., k 2 N implies pk 6 ��!p, tk 6 ��!t, and Ip(pk) \ It(tk) = ;, and (2) k = 1 implies

projp(c) 2 �B(p). The set of all computations of p and t is denoted by C(p; t).
3. Computation c is called successful if tjcj 2 Suc, in case jcj < 1, or if projt(c) 2 �B(t), in case

jcj =1. We say that p may pass t, if there exists a successful computation c 2 C(p; t). Analogously,
p must pass t, if every computation c 2 C(p; t) is successful.

Intuitively, an in�nite computation of process p and test t di�ers from an in�nite potential computation in

that in the former the process is required to enter a B�uchi state in�nitely often. An in�nite computation

is then successful if the test also passes through a B�uchi state in�nitely often. Hence, in contrast with the

original theory of DeNicola and Hennessy, some in�nite computations can be successful in our setting. Since

B�uchi processes and B�uchi tests potentially exhibit nondeterministic behavior, one may distinguish between

the possibility and inevitability of success. This is captured in the following de�nitions of the B�uchi may{

and must{preorders.

Definition 3.4 (B�uchi Testing Preorders). Let p and q be B�uchi processes. Then we de�ne

� p vmay
CL q if 8t 2 T : pmayCL t implies qmayCL t.

� p vmust
CL q if 8t 2 T : pmustCL t implies qmustCL t.

It is straightforward to check that the relations vmay
CL and vmust

CL on P are preorders, i.e., that they are

re
exive and transitive relations. The classical may{ and must{preorders of DeNicola and Hennessy are

de�ned analogously, but on labeled transition systems and when restricting T to classical tests [11].

3.3. Alternative Characterizations. In the following, we present alternative characterizations of

the B�uchi may{ and must{preorders. The characterizations are similar in style to the ones developed by

DeNicola and Hennessy and provide the basis for comparing their testing theory to our B�uchi testing.
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Theorem 3.5. Let p and q be B�uchi processes. Then

1. p vmay
CL q if and only if L�n(p) � L�n(q) and LB(p) � LB(q).

2. p vmust
CL q if and only if for all w 2 A� [A1 such that p + w, the following hold:

(a) q + w

(b) jwj <1: 8q0: q w
=) q0 implies 9p0: p w

=) p0 and Ip(p0) � Iq(q0).
jwj =1: w 2 LB(q) implies w 2 LB(p).
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Fig. 3.1. B�uchi tests used for characterizing the B�uchi may{ and must{preorders

With respect to �nite traces, the characterizations are virtually the same as the ones of DeNicola and

Hennessy's preorders [11]. However, we needed to re�ne the classical characterizations in order to capture

the sensitivity of B�uchi may{ and must{testing to in�nite traces. The proof of the above characterization

theorem relies on the properties of the following speci�c B�uchi tests.

1. For w = (ai)0<i�k 2 A�, let tmay;�
w =df hT;�!; ;; 0; fkgi, where T =df f0; 1; : : : ; kg and �!=df

fhi� 1; ai; ii j 0 < i � kg.
2. For w = (ai)i2N 2 A1, let tmay;1

w =df hT;�!; T; 0; ;i, where T =df N0 , �!=df fhi� 1; ai; ii j i 2 Ng.
3. For w = (ai)0<i�k 2 A�, let tmay;div

w =df hT;�!; fkg; 0; ;i, where T =df f0; 1; : : : ; kg, �!=df

fhi� 1; ai; ii j 0 < i � kg [ fhk; �; kig.
4. For w = (ai)0<i�k 2 A�, let t+w =df hT;�!; ;; 0; fsgi, where T =df f0; 1; : : : ; kg ] fsg and �!=df

fhi� 1; ai; ii j 0 < i � kg [ fhi; �; si j 0 � i � kg.
5. For w = (ai)i2N 2 A1, let t+w =df hT;�!; T n fsg; 0; fsgi, where T =df N0 ] fsg and �!=df

fhi� 1; ai; ii j i 2 Ng [ fhi; �; si j i 2 N0g.
6. For w = (ai)0<i�k 2 A�, let tmust;�

w =df hT;�!; ;; 0; fsgi, where T =df f0; 1; : : : ; kg ] fsg and

�!=df fhi� 1; ai; ii j 0 < i � kg [ fhi; �; si j 0 � i < kg.
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7. For w = (ai)0<i�k 2 A�, let tmust;max
w =df hT;�!; ;; 0; fs1; s2gi, where T =df f0; 1; : : : ; kg ] fs1; s2g

and �!=df fhi� 1; ai; ii j 0 < i � kg [ fhi; �; s1i j 0 � i < kg [ fhk; a; s2i j a 2 Ag.
8. For w = (ai)i2N 2 A1, we de�ne tmust;1

w =df hT;�!; ;; 0; fsgi, where T =df N0 ] fsg and �!=df

fhi� 1; ai; ii j i 2 Ng [ fhi; �; si j i 2 N0g.
9. For w = (ai)0<i�k 2 A� and A � A, let tmust

w;A =df hT;�!; ;; 0; fs1; s2gi, where T =df f0; 1; : : : ; kg ]
fs1; s2g and �!=df fhi� 1; ai; ii j 0 < i � kg [ fhi; �; s1i j 0 � i < kg [ fhk; a; s2i j a 2 Ag.

In order to increase comprehension, we also graphically depict the B�uchi tests in Figure 3.1. Here, B�uchi

states are marked by the symbol
p

and success states are distinguished from regular states by thick borders.

Intuitively, while B�uchi tests tmay;�
w and tmay;1

w test for the presence of �nite and B�uchi trace w, respectively,

B�uchi tests tmay;div
w and t+w are capable of detecting divergent behavior when executing trace w. B�uchi

tests tmust;�
w , tmust;max

w , and tmust;1
w are concerned with the absence of �nite trace, maximal trace, and B�uchi

trace w, respectively. Finally, B�uchi test tmust
w;A is capable of comparing the initial action sets of states reached

when executing trace w with respect to set A � A.
Our speci�c B�uchi tests satisfy the following desired properties. Their proofs are simple analyses of the

potential computations arising when running the B�uchi tests in lock{step with arbitrary B�uchi processes.

Lemma 3.6. Let p be a B�uchi process.

1. Let w 2 A�. Then, w 2 L�n(p) if and only if pmayCL t
may;�
w .

2. Let w 2 A1. Then, w 2 LB(p) if and only if pmayCL t
may;1
w .

3. Let w 2 A�. Then, w 2 LB(p) if and only if pmayCL t
may;div
w .

4. Let w 2 A� [ A1. Then, p + w if and only if pmustCL t
+
w.

5. Let w 2 A� such that p + w. Then, w =2 L�n(p) if and only if pmustCL t
must;�
w .

6. Let w 2 A� such that p + w. Then, w =2 Lmax(p) if and only if pmustCL t
must;max
w .

7. Let w 2 A1 such that p + w. Then, w =2 LB(p) if and only if pmustCL t
must;1
w .

The proof of Theorem 3.5 relies extensively on these intuitive properties of B�uchi tests and can be found

in Appendix A.1. For �nite traces, it proceeds analogously to the corresponding proofs in [11]. For in�nite

traces, it employs the in�nite{state tests tmay;1
w , t+w, and tmust;1

w for the \=)" proof directions, while the

reverse directions can be proved directly along the according de�nition of successful computation. Note that

the usage of in�nite{state tests | even when relating �nite-state B�uchi processes | is justi�ed by our view

that B�uchi tests represent the arbitrary, potentially irregular behavior of the unknown system environment.

3.4. Conservative Extensions Results. In this section we investigate the relation of our B�uchi

may{ and must{preorders to the corresponding classical preorders, vmay
DH and vmust

DH , respectively, as de�ned

by DeNicola and Hennessy [11]. It should be noted that their framework is restricted to image{�nite labeled

transition systems and classical, image{�nite tests; a labeled transition system or B�uchi process is called

image{�nite if every state has only a �nite number of outgoing transitions for any action.

Theorem 3.7. Let p and q be image{�nite labeled transition systems.

1. If p and q are convergent, then p vmay
CL q if and only if p vmay

DH q.

2. p vmust
CL q if and only if p vmust

DH q.

We refer the reader to Appendix A.2 for the proof of this theorem. In a nutshell, the second part follows

by inspection of the alternative characterizations of vmust
CL and vmust

DH . The validity of the �rst part is a

consequence of a result established by Narayan Kumar et al. in [28]. They introduced a notion of B�uchi
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testing for labeled transition systems only, rather than for the more general class of B�uchi processes, and

they required labeled transition systems and B�uchi tests to be convergent and image{�nite. Relative to their

restricted framework, it is easy to see that our and their de�nitions of B�uchi tests and passing tests coincide.

Narayan Kumar et al. showed that their B�uchi may{ and must{preorders coincide with the ones of DeNicola

and Hennessy, i.e., (convergent) B�uchi tests do not add distinguishing power to classical tests, if only labeled

transition systems are taken into account.

Note that Theorem 3.7(1) is invalid if one allows divergent labeled transition systems. As a counterex-

ample consider the labeled transition systems hfpg; fhp; �; pig; fpg; pi and hfqg; ;; fqg; qi, as well as the B�uchi
test hftg; fht; �; tig; ftg; t; ;i. Then, p vmay

DH q since ; = L�n(p) � L�n(q) = f�g, but p 6vmay
CL q since pmayCL t

and q 6mayCL t. The reason for the latter is that the in�nite computation c 2 C(p; t), where p and t alternately

engage in a �{transition, is successful. However, the only computation of q and t is the empty computation.

This computation is unsuccessful since the set of success states of t is empty.

4. B�uchi Must{testing, Trace Inclusion, & Linear{time Temporal Logics. In this section we

establish a connection between the B�uchi must{preordervmust
CL and the satisfaction relation j= for linear{time

temporal logic (LTL). More speci�cally, our goal is to show how to construct a B�uchi process B� from an

LTL formula � in such a way that p j= � if and only if B� vmust
CL p, for any labeled transition system p.

(Recall that a labeled transition system is a B�uchi process in which every state is a B�uchi state.) Our

result builds on automata{theoretic approaches to LTL model checking developed by Vardi and Wolper [36]

and others [6, 15, 20]. These approaches reduce the model{checking problem to one of checking language

containment between B�uchi automata and rely on the generation of B�uchi automata from LTL formulas. To

achieve our goal, we �rst show that vmust
CL coincides with a form of trace inclusion when the lower process is

\purely nondeterministic." Then we illustrate how the classical constructions of B�uchi automata from LTL

formulas may be adapted to cope with the phenomena of deadlock and divergence that labeled transition

systems potentially exhibit. In what follows we assume that the set A of actions is �nite.

4.1. B�uchi Must{testing & Reverse Trace Inclusion. We start by characterizing the B�uchi must{

preorder for a certain class of B�uchi processes by means of trace inclusion. To state our result, we need to

introduce the notion of pure nondeterminism. We call a B�uchi process p purely nondeterministic, if for

all p0 2 P : (i) p0
��!p implies p0 6 a�!p, for all a 2 A, and (ii) jfha; p00i 2 A � P j p0 a�!p p

00gj = 1. Note

that every B�uchi process p can be transformed to a purely nondeterministic B�uchi process p0, such that

Ldiv(p) = Ldiv(p
0), L�n(p) = L�n(p

0), Lmax(p) = Lmax(p
0), and LB(p) = LB(p

0), by splitting every transition

p0
a�!p p

00 into two transitions p0
��!p php0;a;p00i

a�!p p
00, where php0;a;p00i =2 P is a new, distinguished state.

Theorem 4.1. Let p and q be B�uchi processes such that p is purely nondeterministic. Then, p vmust
CL q

if and only if
(i) Ldiv(q) � Ldiv(p)

(ii) L�n(q) nLdiv(p) � L�n(p)

(iii) Lmax(q) nLdiv(p) � Lmax(p)

(iv) LB(q) nLdiv(p) � LB(p)

(4.1)

The proof of the \=)"{direction again exploits Lemma 3.6, while the \(="{direction follows by considering
the contrapositive. Details can be found in Appendix A.3. The necessity of the premise of this theorem is il-

lustrated by the following example. Consider the B�uchi processes p =df hfp1; p2g; fhp1; a; p1i; hp1; b; p2ig; ;; p1i
and q =df hfq1; q2g; fhq1; b; q2ig; ;; q1i. Then p is not purely nondeterministic and Equation 4.1 obviously

holds, but p 6vmust
CL q since pmustCL t and q 6mustCL t, for the B�uchi test t =df hft1; t2g; fht1; a; t2ig; ;; t1; ft2gi.
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4.2. Constructing B�uchi Processes from LTL Formulas. We now de�ne the version of LTL that

is considered in the sequel and show how an LTL formula may be converted into a purely nondeterministic

B�uchi process, whose languages contain the traces that satisfy the formula.

4.2.1. Syntax and Semantics of LTL. Our variant of LTL interprets formulas with respect to se-

quences of actions [14] rather than states [13], since in our setting transitions and not states are labeled.

Accordingly, atomic propositions will also be interpreted with respect to actions. Moreover, our variant

extends traditional LTL in that its semantics is given with respect to in�nite and �nite traces, i.e., words

in A� [ A1 [25]. This permits formulas to constrain ongoing as well as deadlocking behavior. The formal

syntax for LTL formulas is de�ned by the following BNF.

� ::= tt j � j a j :a j � ^ � j � _ � j X� j X̂� j �U� j �V�

Here, a 2 A is an atomic proposition that is true of action a and false for all other actions. Moreover, X̂ is the

dual of the next{state operator X, which in contrast with traditional LTL is not self{dual in our setting since

we admit �nite traces as models. In the following, we denote the set of all LTL formulas by F . We say that

a trace w = (ai)0<i�k 2 A� [ A1 satis�es � if w j= � holds. The relation j= � (A� [ A1)� F is the least

relation satisfying the conditions in Table 4.1, where wj stands for (ai)j�i�k 2 A�, for any 1 � j � k. We also

say that a B�uchi process p satis�es LTL formula �, in signs p j= �, if 8w 2 Lmax(p)[LB(p)[Ldiv(p): w j= �. It

should be noted that our syntax limits the application of negation to actions, rather than generally de�ning

a formula :� with meaning w j= :� if w 6j= �. This is not a restriction since our logic is self{dual, i.e., the

operators ^ and _, X and X̂, and U and V are dual to each other.

Table 4.1

Semantics of LTL formulas

w j= tt

w j= a if w 6= � and a1 = a

w j= :a if w 6j= a

w j= �1 ^ �2 if w j= �1 and w j= �2

w j= �1 _ �2 if w j= �1 or w j= �2

w j= X� if w 6= � and w2 j= �

w j= X̂� if w 6= � implies w2 j= �

w j= �1U�2 if 90 < i � k: wi j= �2 and 80 < j < i: wj j= �1

w j= �1V�2 if (80 < i � k: wi j= �2) or (90 < i � k: wi j= �1 and 80 < j � i: wj j= �2)

The intuitive meaning of the LTL operators is the following. The symbols tt and � stand for the

propositional constants true and false, which are satis�ed by every trace and no trace, respectively. A �nite

or in�nite trace satis�es the atomic proposition a if the trace is not empty and if its �rst action is a. It

satis�es :a if it does not satisfy a. The propositional constructs ^ and _ have their usual interpretation

as conjunction and disjunction, respectively. The unary operators X and X̂ represent next{state operators.

Intuitively, the trace a � w satis�es X� and X̂�, if w satis�es �. The only di�erence between X� and X̂�

arises when considering the empty trace �. Whereas � satis�es X̂�, it violates X�. Formula �1U�2 represents

an until property and is satis�ed by any trace which satis�es �1 until �2 becomes valid. �1V�2 is a release

formula and is satis�ed by any trace which satis�es �2 unless this formula is released from its obligation by

the truth of �1, which need never occur. Finally, we may introduce the derived operators G (\generally")

and F (\eventually"), already used in Section 2, by de�ning G� =df �V� and F� =df tt U�.
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In the remainder of this section we describe how to construct a purely nondeterministic B�uchi process B�

from LTL formula � such that p j= � if and only if B� vmust
CL p, for any labeled transition system p. We

present the construction of B� in three stages.

4.2.2. Constructing B�uchi Processes: In�nite Traces. To begin with, we concentrate on in�nite

traces and show how to build a convergent B�uchi process B1
� such that w 2 LB(B

1
�) if and only if w 2 A1

and w j= �. The construction of B1
� can be done using existing techniques [9, 15, 36] for converting

traditional LTL formulas into B�uchi automata. Note that formulas X�0 and X̂�0 coincide, for any �0 2 F ,
when considering only in�nite traces as models. Using, e.g., the algorithm of [9], one may build a B�uchi

automaton whose language contains the in�nite traces satisfying �. The states in this automaton are labeled

by sets of formulas, and the construction ensures that in�nite B�uchi traces emanating from a state are

guaranteed to satisfy each formula labeling this state. We now may adapt the following classical result.

Theorem 4.2. Let � be an LTL formula. Then there exists a B�uchi process B1
� such that w j= � if and

only if w 2 LB(B
1
�), for all w 2 A1.

One may immediately derive the following corollary.

Corollary 4.3. Let p be a convergent, deadlock{free labeled transition system, and let � be an LTL

formula. Then p j= � if and only if LB(p) � LB(B
1
�).

4.2.3. Allowing Finite Maximal Traces. In the second stage of our construction of B�, we show

how to generate a B�uchi process B2
� satisfying w j= � if and only if w 2 LB(B

2
�) [ Lmax(B

2
�), for any

w 2 A� [ A1. The basic approach relies on altering B�uchi process B1
� to handle �nite traces. More

precisely, for every state s in B1
� we check whether all formulas contained in s are satis�ed by the deadlock

trace �. Checking for acceptance of the deadlock trace can be done syntactically, along the structure of

formulas. Next, for every state s in B1
� such that each LTL formula � labeling s is satis�ed by �, we add a

transition s
��! �, where � is a new state that is labeled with fX̂ �g, which has � as its only model. However,

since we give deadlocks a meaning in form of state �, we need to eliminate other states having no outgoing

transitions in B1
�. Such states correspond to logical contradictions, i.e., the set of formulas labeling such

states is not satis�able. In B2
� we eliminate such deadlock states by removing them from the acceptance set

if they are labeled as such, and then adding �{loops at each of these states.

Proposition 4.4. Let � be an LTL formula. Then there exists a B�uchi process B2
� such that:

1. 8w 2 A�: w j= � if and only if w 2 Lmax(B
2
�)

2. 8w 2 A1: w j= � if and only if w 2 LB(B
2
�)

The second part of the proposition follows immediately from Theorem 4.2, since B2
� and B1

� possess the same

B�uchi traces. The �rst part is a consequence of the fact that (i) our construction ensures that w 2 Lmax(B
2
�)

if and only if s
w�!B2

�
� and that (ii) s

w�!B2

�
� holds if and only if w j= �. As a consequence of this result,

we obtain the following theorem.

Theorem 4.5. Let p be a convergent labeled transition system, and let � be an LTL formula. Then

p j= � if and only if Lmax(p) � Lmax(B
2
�) and LB(p) � LB(B

2
�).

4.2.4. Allowing Divergent Traces. As the third step in our construction, we generate a B�uchi

process B3
� that additionally takes divergent traces of labeled transition systems into account. Recall that

for general labeled transition systems p we de�ned p j= � if w j= � for all w 2 Lmax(p) [ LB(p) [ Ldiv(p).
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We modify B2
� to a B�uchi process B3

� by adding divergent states. Intuitively, the divergent states of B3
�

should have the following property. If w 2 A� is such that w �w0 j= � for any w0 2 A� [A1, then the states

reachable in B3
� via w should be divergent. In essence, divergence is intended to capture tautologies, i.e.,

LTL formulas satis�ed by any trace. The construction of B3
� relies �rstly on the construction of a traditional

�nite{state machine for recognizing words in A� satisfying the aforementioned property. This may be done

as follows.

1. Apply the traditional subset construction to determinize B2
�. The label of each state in the deter-

minized automaton will be a set of sets of LTL formulas.

2. For each state s, check whether the formula
W
F2`(s)

V
�2F � is a tautology, where `(s) is the set of

sets of formulas labeling s in the determinized automaton. If so, mark state s as accepting. Note

that the tautology check can be performed algorithmically, although a consideration of this point is

beyond the scope of this paper.

It can be shown that a �nite word w 2 A� is accepted by the resulting automaton A� if and only if w �w0 j= �

for any w0 2 A� [A1. We may now build B3
� by �rst taking the synchronous product of B2

� and A�. States

in this product have the form hsB ; sAi, where sB is a state in B2
� and sA is a state in A�. Such a state

is a B�uchi accepting state in B3
� if sB is a B�uchi state in B2

� or if sA is an accepting state in A�. In the

latter case, we make the state divergent by adding a �{loop to it. We also add a{loops to the state, for

every a 2 A, as well as a �{transition to �. This construction leads to the following lemma and proposition.

Lemma 4.6. Let s be the start state of B�uchi process B3
�, and let w 2 A� [ A1 be such that s *Bdiv

�
w.

Then w � w0 j= �, for any w0 2 A� [A1.

Proposition 4.7. Let w 2 A� [ A1. Then w j= � if and only if w 2 Lmax(B
3
�) [ LB(B

3
�) [ Ldiv(B

3
�).

The validity of this proposition is due to Proposition 4.4 when considering that B3
� possesses by construction

the same maximal traces and the same in�nite B�uchi traces as B3
�. Thus, only the direction \(=" for

divergent traces w 2 Ldiv(B
3
�) needs to be established. However, this case is taken care of by Lemma 4.6.

Before we can state and prove our main result of this section, we need one more lemma.

Lemma 4.8. Let � be an LTL formula, and let p be a labeled transition system such that p j= �. Then

w 2 Ldiv(p) implies w 2 Ldiv(B
3
�).

The proofs of this lemma follows from the fact that if w 2 Ldiv(p), then there exists a �nite pre�x w0 of w

such that w0 � w00 2 Ldiv(p). This implies that w0 must lead to a divergent state in B3
�. Proposition 4.7

and Lemma 4.8 are the key for proving the following theorem, which lifts Corollary 4.2 and Theorem 4.5 to

arbitrary labeled transition systems. Its proof can be found in Appendix A.4.

Theorem 4.9. Let p be a labeled transition system and � an LTL formula. Then, p j= � if and only if

(i) Ldiv(p) � Ldiv(B
3
�)

(ii) L�n(p) nLdiv(B
3
�) � L�n(B

3
�)

(iii) Lmax(p) nLdiv(B
3
�) � Lmax(B

3
�)

(iv) LB(p) nLdiv(B
3
�) � LB(B

3
�)

Note that the \=)" direction of Theorem 4.9 is invalid if p is allowed to be an arbitrary B�uchi process. As

a counter{example, consider p =df hfp1; p2; p3g; fhp1; a; p2i; hp1; b; p3i; hp3; b; p3ig; ;; p1i and � =df a. Then

p j= a, since b1 =2 LB(p), and b 2 L�n(p) n Ldiv(B
3
�). But obviously b =2 L�n(B

3
�).
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4.3. Relating LTL Satisfaction and the B�uchi Must{preorder. As the last step in relating

the LTL satisfaction relation j= to the B�uchi must{preorder vmust
CL , we employ B3

� to construct a B�uchi

process B� such that p j= � if and only if B� vmust
CL p. We �rst note that for any �, B3

� can be transformed to

a purely nondeterministic B�uchi process B� while preserving all languages, as outlined in Section 4.1. Thus,

Theorem 4.9 is valid for B� as well as for B3
�. By combining Theorems 4.1 and 4.9 we obtain the desired

main result as a corollary.

Corollary 4.10 (B�uchi Must{testing and LTL Model Checking). Let p be a labeled transition system

and � be an LTL formula. Then we have p j= � if and only if B� vmust
CL p.

As a consequence of this corollary, our notion of B�uchi must{testing not only extends DeNicola and Hen-

nessy's must{preorder [11] to B�uchi processes, as well as the variant of B�uchi must{testing introduced by

Kumar et al. [28], but is also compatible with the satisfaction relation of linear{time logics.

5. Motivating Example | Revisited. In this section we illustrate the application of our theory by

revisiting and formalizing the motivating example introduced in Section 2. To do so, we need to de�ne two

operators on B�uchi automata: parallel composition and restriction.

Our parallel composition operator \j" and the restriction operator nA, where A � A, are inspired by

the ones in the process algebra CCS [27]. We assume that alphabet A is composed of two sets A! and A?,
representing sending and receiving actions, such that for every a! 2 A! there exists a corresponding a? 2 A?,
and vice versa. Here, a should be interpreted as a channel name. The intuition for parallel composition in

CCS is that a process willing to send a message on channel a and another one able to receive a message on a

can do so by performing the actions a! and a? in synchrony with each other. This handshake is invisible to an

external observer, i.e., it results in the distinguished, unobservable action � . When adapting the CCS parallel

operator to our framework of B�uchi processes, the questions that naturally arises concerns the interpretation

of B�uchi traces. We adopt the following point of view: Intuitively, \fair merges" of B�uchi processes p and q

should also be B�uchi traces of pjq. Moreover, a B�uchi trace of one process, when merged with a �nite trace

of the other process, should result in a B�uchi trace of pjq.
Formally, we de�ne the parallel composition of B�uchi processes hP;�!p;

p
p; pi and hQ;�!q ;

p
q ; qi to

be the B�uchi process hP jQ;�!pjq;
p
pjq; pjqi, where P jQ =df fp0jq0 j p0 2 P; q0 2 Qg [ fq0jp0 j p0 2 P; q0 2 Qg.

The transition relation �!pjq is the least relation satisfying the following rules.

(1) p0
��!p p

00 implies p0jq0 ��!pjq q
0jp00 if p0

p
p

(2) p0
��!p p

00 implies p0jq0 ��!pjq p
00jq0 if not p0

p
p

(3) q0
��!q q

00 implies p0jq0 ��!pjq q
00jp0

(4) p0
a!�!p p

00 and q0
a?�!q q

00 implies p0jq0 ��!pjq q
00jp00 if p0

p
p

(5) p0
a!�!p p

00 and q0
a?�!q q

00 implies p0jq0 ��!pjq p
00jq00 if not p0

p
p

(6) p0
a?�!p p

00 and q0
a!�!q q

00 implies p0jq0 ��!pjq q
00jp00 if p0

p
p

(7) p0
a?�!p p

00 and q0
a!�!q q

00 implies p0jq0 ��!pjq p
00jq00 if not p0

p
p

These rules are in accordance with our above{mentioned intuition of system behavior. The \switching" of

the states of p and q in Rules (1), (3), (4), and (6) allows us to fairly merge \B�uchi traces with B�uchi traces"

and \B�uchi traces with �nite traces" of the argument B�uchi processes. This switching is also done for logical

conjunction in the construction of B�uchi automata from LTL formulas [9]. Finally, the B�uchi predicate
p
pjq

is de�ned by p0jq0ppjq if p
0p

p, for any p
0 2 P and q0 2 Q. A similar construction could be done for CSP{style
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parallel composition [19]. The unary restriction operator nA, for A � A, essentially is a scoping mechanism

on channel names. Intuitively, p nA is de�ned as the B�uchi process p, except that all transitions labeled by

actions a! and a?, where a 2 A, are eliminated. One can now obtain the desired compositionality result of

the B�uchi may{ and must{preorders with respect to the new operators.

Proposition 5.1. Let p1, p2, q1 and q2 be B�uchi processes and A � A. Then
(i) p1 vmay

CL p2 and q1 vmay
CL q2 implies p1jq1 vmay

CL p2jq2.
(ii) p1 vmust

CL p2 and q1 vmust
CL q2 implies p1jq1 vmust

CL p2jq2.
(iii) p1 vmay

CL p2 implies p1 nA vmay
CL p2 nA.

(iv) p1 vmust
CL p2 implies p1 nA vmust

CL p2 nA.

The proof of this proposition can be done by exploiting the characterizations of the B�uchi may{ and must{

preorders and our conservative extension results, as presented in Sections 3.3 and 3.4. Regarding �nite

traces, one can then adapt the corresponding proofs of DeNicola and Hennessy [11]. The compositionality

with respect to B�uchi traces is straightforward regarding the restriction operator; for the parallel operator,

it is a consequence of the formalization of our intuition of fair merging.

Let us return to the motivating example of a generic communication protocol. To demonstrate that

the LTL speci�cation of the sender is strong enough to ensure that the protocol is correct, in the sense of

satisfying the temporal formula BSpec given in Section 2, we may use the results of this paper as follows.

1. Construct the purely nondeterministic B�uchi process BSpec for LTL formula Spec, as illustrated in

Section 4.2.

2. Construct the purely nondeterministic B�uchi process BSender for LTL formula �sender describing the

behavior of the sender.

3. Assemble the overall system: System =df (BSender j Medium j Receiver) n fput; get; pack; gackg.
4. Determine whether or not BSpec vmust

CL System.

In this case, the answer is positive, and Proposition 5.1 guarantees that replacing BSender with any B�uchi

process p such that BSender vmust
CL p will ensure that the overall system meets its speci�cation. If p is a

labeled transition system then BSender vmust
CL p holds exactly when p j= �Sender. One example of such a p is

the labeled transition system depicted in Figure 2.2.

6. Related Work. Other researchers have also investigated formalisms that permit some form of

combined assertional and operational reasoning. Of most direct relevance to this paper is the work of

Kurshan [23], who developed a theory of !{word automata that includes notions of synchronous and asyn-

chronous composition. However, his underlying semantic model maps processes to their maximal (in�nite)

traces, and the associated notion of re�nement is (reverse) trace inclusion. In theories of concurrency such as

CCS [27] and CSP [19], in which deadlock is possible, maximal trace inclusion is not compositional [26]. In

contrast, our must{preorder is compositional, at least for the operators presented here. The idea of testing

was also adopted by Valmari in [35] where a notion of tester process dealing with �nite and in�nite traces,

divergence, and failures is developed. Other work, such as that of Kupferman and Vardi [22], Grumberg

and Long [16], and Clarke, Long and McMillan [7] investigated modular and compositional model{checking

in similar non{deadlock environments. In each case, temporal formulas are used, sometimes in conjunc-

tion with additional processes to capture \environmental" information about the module being analyzed.

Andersen [1] developed an approach to compositional model checking in which formulas are \factored" by

parallel components given as labeled transition systems, yielding new formulas that must be satis�ed by the
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system comprising the remaining components. His work takes place in the setting of potentially deadlocked

processes, although the problem he considered is more narrowly de�ned than the one studied here.

Relatively more work has been devoted to analyzing relationships between re�nement and logical ap-

proaches. One line of study relates temporal{logic speci�cations to re�nement{based ones by establishing

that one system re�nes another if and only if it satis�es the same properties. Results along these lines were

pioneered by Hennessy and Milner [18] for bisimulation equivalence [27] and a modal logic of their devis-

ing [27]. Stirling developed similar characterizations for other re�nement orderings and related logics [33].

The ideas were also adopted by Browne, Clarke and Grumberg [4] regarding bisimulation equivalence and the

branching{time temporal logic CTL�, by Dams [10] for several variants of the simulation preorder [27] and

the logic CTL, and by DeNicola and Vaandrager [12] with respect to branching bisimulation. Another line of

research involves the encoding of labeled transition systems as logical formulas, and vice versa. Ste�en and

Ingolfsdottir [32] de�ned an algorithm for converting �nite{state labeled transition systems into formulas in

the mu{calculus [21], while Larsen [24] demonstrated that certain mu{calculus formulas can be encoded as

bisimulation{based implicit speci�cations.

Finally, traditional testing has also been enriched with notions of fairness [2, 29]. These results, while not

addressing the issue of temporal logic, provide an alternative means | besides introducing B�uchi states |

of incorporating notions of in�nite computation into labeled transition systems.

7. Conclusions and Future Work. In this paper we conservatively extended the testing theories

of DeNicola and Hennessy [11] and Narayan Kumar et al. [28] to B�uchi processes. We illustrated that

B�uchi processes provide a uniform basis for analyzing heterogeneous reactive{system speci�cations given

as a mixture of labeled transition systems and formulas in linear{time temporal logics (LTL). We then

studied the derived B�uchi may{ and must{preorders, developed alternative characterizations, and showed

that the B�uchi must{preorder degrades to a variant of reverse trace inclusion when its �rst argument is

purely nondeterministic. Using the latter result, we established that standard algorithms for constructing

B�uchi processes from LTL formulas can be adapted to our setting in such a way that LTL model checking

reduces to checking our form of trace inclusion. In a nutshell, we proved that

LTL model checking = B�uchi must{preorder checking + pure nondeterminism.

Hence, LTL model checking may be viewed as re�nement. To illustrate the utility of our novel frame-

work, we presented several operators for constructing speci�cations, argued that the B�uchi must{preorder is

substitutive for the operators, and gave an example showing how they may be used to build system designs.

The results of this paper are important �rst steps towards a more ambitious goal, namely developing

languages combining operational and assertional styles of speci�cation. Accordingly, future research should

focus on studying languages mixing operators from process algebras and LTL, which can be given a semantics

in terms of B�uchi processes. For speci�c languages, one could then study compositionality issues, fully

abstractness, and axiomatic characterizations of our B�uchi must{preorder, as is usually done in the �eld

of process algebra. For the sake of completing the theory of B�uchi testing, we intend to investigate the

consequences of restricting our framework to �nite{state tests. Moreover, we want to explore how well{

known algorithms for computing DeNicola and Hennessy's must{preorder [8] can be lifted to the B�uchi

must{preorder on �nite{state B�uchi processes. We would also like to study theories supporting branching{

time logics as well.
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Appendix A. Proof of the Main Theorems.

A.1. Proof of Theorem 3.5. Let p and q be B�uchi processes.

1. For proving the \=)"{direction, we distinguish the following cases.

� w 2 L�n(p): Then pmayCL t
may;�
w by Lemma 3.6(1) and, since p vmay

CL q, also qmayCL t
may;�
w .

Applying Lemma 3.6(1) again, we obtain w 2 L�n(q), as desired.

� w 2 LB(p): Here, we distinguish the cases jwj = 1 and jwj < 1. In both cases, we closely

follow the lines of the �rst proof part, but use Lemma 3.6(2) and B�uchi test tmay;1
w , as well as

Lemma (3) and B�uchi test tmay;div
w , respectively, instead of Lemma 3.6(1) and B�uchi test tmay;�

w .

For the \(="{direction, assume that t is a B�uchi test satisfying pmayCL t. Then there exists a

successful computation c 2 C(p; t) with w =df trace(projp(c)) = trace(projt(c)). If jwj = 1 we have

w 2 LB(p). Hence, w 2 LB(q), and we can construct a successful computation c0 2 C(q; t). The case
jwj < 1 is splitted into two sub{cases according to whether w 2 L�n(p) or w 2 LB(p). In either

case one can easily establish qmayCL t. Therefore, p vmay
CL q, as desired.

2. For the \=)"{direction, assume p vmust
CL q, and let w 2 A� [ A1 such that p + w.

(a) Then pmustCL t
+
w by Lemma 3.6(4) and, since p vmust

CL q, also qmustCL t
+
w. Thus, we obtain

q + w by applying Lemma 3.6(4) again.

(b) jwj <1: Let q
w
=) q0 for some q0, i.e., w 2 L�n(q). Assume further that 6 9p0: p w

=) p0 and

Ip(p0) � Iq(q0). We may distinguish the following cases.

� \p 6w=)": Then w =2 L�n(p), and by Lemma 3.6(5) we obtain pmustCL t
must;�
w . However,

:(qmustCL t
must;�
w ) by the same lemma.

� \p
w
=)": Let A =df fIp(p0) j p w

=) p0g 6= ;. By assumption, for every Ai 2 A there exists

an action ai 2 Ai n Iq(q0). Let B 6= ; be the set of these actions. It is easy to see that

pmustCL t
must
w;B due to the construction of B�uchi test tmust

w;B . However, :(qmustCL t
must
w;B ) since

q0 6ai=)q for all actions ai 2 B.

Hence, p 6vmust
CL q which is a contradiction.

jwj =1: Assume w =2 LB(p). Then pmustCL t
must;1
w by Lemma 3.6(7) and, since p vmust

CL q,

also qmustCL t
must;1
w . But then w =2 LB(q) holds by Lemma 3.6(7), as desired.

For the proof of the \(="{direction, let t 2 T such that :(qmustCL t), i.e., there exists an un-

successful computation c = (hhqi�1; ti�1i; �i; hqi; tiii)0<i�k 2 C(q; t). Let w =df trace(projq(c)) =

trace(projt(c)). If p * w, we can construct an unsuccessful, in�nite computation c0 which resembles c

until p can engage in its divergent B�uchi computation, in which case we can force t not to contribute

to c0 any more. Thus, c0 is an unsuccessful computation, since projp(c
0) 2 �B(p), but jprojt(c0)j <1,

i.e., projt(c
0) =2 �B(t).

For the remainder of this proof, let us assume p + w, i.e., w =2 Ldiv(p). According to the de�nition

of (un)successful computations, we distinguish the following two cases.

� jcj <1: Then w 2 L�n(q), q
w
=) q0 for some q0, and tk =2 Suc. Due to the maximality of

computations we also have qk 6 ��!q, tk 6 ��!t, and Iq(qk) \ It(tk) = ;. By Condition 2(a) of the

premise (cf., right{hand side of the characterization in Theorem 3.5) we know of the existence

of some p0 such that p
w
=) p0 and Ip(p0) � Iq(q0). Using these facts one may construct a

�nite computation c0 = (hhpi�1; t0i�1i; �i; hpi; t0iii)0<i�l 2 C(p; t) with projt(c
0) = projt(c) and

hpl; t0li = hp00; tki, where p0 �
=)p p

00 for some p00 6 ��!p. Note that such a p
00 must exist since p + w.

Moreover, Ip(p00) � Ip(p0) by the de�nition of Ip(�). Because Ip(p00)\It(tk) � Iq(q0)\It(t0l) = ;
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holds, c0 cannot be extended. Finally, c0 is unsuccessful since t0l = tk =2 Suc.

� jcj =1: Hence, w 2 LB(q) and, since LB(q) � LB(p), also w 2 LB(p). Then it is straightforward

to construct an unsuccessful computation c0 2 C(p; t) with projt(c
0) = projt(c).

In both cases we obtain :(pmustCL t). Summarizing, we have shown for an arbitrary test t 2 T that

:(qmustCL t) implies :(pmustCL t), i.e., p vmust
CL q, as desired.

This �nishes the proof of Theorem 3.5.

A.2. Proof of Theorem 3.7. Consider image{�nite labeled transition systems only.

1. Under the additional assumption of convergence, the de�nitions of vmay
CL and the B�uchi{may preorder

introduced by Narayan Kumar et al. are identical. Narayan Kumar et al. showed their preorder to

coincide with vmay
DH ; hence, also vmay

CL and vmay
DH coincide.

...a
a

a

a

a

a

...a
a

a

a

a

a

a

a
p: q:

Fig. A.1. (Counter{)example demonstrating the necessity of the image{�niteness assumption

2. We now establish vmust
CL = vmust

DH by showing that the alternative characterizations of these preorders

coincide when considering the setting of DeNicola and Hennessy. The alternative characterization

of vmust
DH (cf. Theorem 3.5(2)) di�ers from the one of vmust

CL in two ways: (i) the de�nition of p + w and

q + w also permits the case w 2 A1, and (ii) Condition (b) in Theorem 3.5(2) for jwj =1 is missing.

Regarding the �rst point of departure, our de�nition of divergence implies for all w = (ai)i2N 2 A1

the following.

8k 2 N: (p + wk implies q + wk) implies (p + w implies q + w)

where wk =df (ai)0<i�k 2 A�. Thus, Condition (a) of Theorem 3.5(2) for in�nite w is already

implied by the same condition for all �nite pre�xes of w. Moreover, our de�nition of divergence

coincides with the one of DeNicola and Hennessy for labeled transition systems. The second point

of departure can be addressed in a similar fashion. In fact, it is easy to establish that the following

holds for image{�nite labeled transition systems p and q and for all w = (ai)i2N 2 A1 such that

p + w and q + w.

8k 2 N: (wk 2 L�n(q) implies wk 2 L�n(p)) implies (w 2 LB(q) implies w 2 LB(p))

where wk =df (ai)0<i�k 2 A�. Note that in the case where w 2 A�, the w{convergence of q

implies w =2 LB(q). As a consequence, Condition (a) implies Condition (b) under the assumptions of

Theorem 3.7. A (counter{)example demonstrating the necessity of the image{�niteness assumption

is depicted in Figure A.1.

Thus, the B�uchi may{ and must{preorders coincide with DeNicola and Hennessy's may{ and must{preorders

in the considered setting, as desired.
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A.3. Proof of Theorem 4.1. For the proof of the \=)"{direction, assume that p vmust
CL q, and let

w 2 A� [ A1. Then

� w 2 Ldiv(q) if q * w. By Lemma 3.6(4) we have :(qmustCL t
+
w). Since p vmust

CL q also :(pmustCL t
+
w)

holds, i.e., p * w by applying Lemma 3.6(4) again. Thus, w 2 Ldiv(p).

� w 2 L�n(q) nLdiv(p) implies w 2 L�n(p), p + w, and also q + w by Equation 4.1(i). By Lemma 3.6(5)

we conclude :(qmustCL t
must;�
w ). Because of the premise p vmust

CL q also :(pmustCL t
must;�
w ) holds, i.e.,

w 2 L�n(p) by Lemma 3.6(5).

� The cases w 2 Lmax(q) n Ldiv(p) and w 2 LB(q) n Ldiv(p) are similar to the previous one but refer

to Lemma 3.6(6) and Lemma 3.6(7), respectively. As desired, we may obtain w 2 Lmax(p) and

w 2 LB(p), respectively.

Note that this proof direction does not require p to be purely nondeterministic.

For establishing the \(="{direction, assume that the language inclusions of Equation 4.1 hold. More-

over, assume the existence of a B�uchi test t such that :(qmustCL t). Thus, there exists an unsuccessful

computation c = (hhqi�1; ti�1i; �i; hqi; tiii)0<i�k 2 C(q; t) with w =df trace(projq(c)) = trace(projt(c)). If

p * w, then we can construct an unsuccessful, in�nite computation c0 which resembles c until p can engage

in its divergent B�uchi computation, at which point t can be forced to stop contributing to c0. As desired,

computation c0 is unsuccessful since projp(c
0) 2 �B(p), but jprojt(c0)j <1, i.e., projt(c

0) =2 �B(t).

For the remainder of this proof, let us assume p + w, i.e., w =2 Ldiv(p). According to the de�nition of

(un)successful computations, we distinguish the following two cases.

1. jcj <1: Here, we have tk =2 Suc.

(a) w 2 Lmax(q): By Premise 4.1(iii) we have w 2 Lmax(p). Then we can construct a �nite compu-

tation c0 = (hhpi�1; t0i�1i; �0i; hpi; t0iii)0<i�l 2 C(p; t) with projt(c
0) = projt(c) and t0l = tk. Thus,

c0 is unsuccessful, since jc0j <1 and t0l =2 Suc.

(b) w 2 L�n(q) n Lmax(q): In this case, we know of the existence of some a 2 A such that qk
a�!q

and, because of the maximality of computations, tk 6 a�!t. Thus, w � a 2 L�n(q) holds, and by

Premise 4.1(iv) we have w � a 2 L�n(p). Since p is purely nondeterministic, we may construct

a �nite computation c0 = (hhpi�1; t0i�1i; �0i; hpi; t0iii)0<i�l 2 C(p; t), where projt(c
0) = projt(c),

t0l = tk and pl
a�!p. Indeed, c

0 is maximal since t0l 6 a�!t and p0l 6 b�!p for all b 6= a. Moreover, c0

is unsuccessful, because jc0j <1 and t0l =2 Suc.

2. jcj =1: Here, projt(c) =2 �B(t). By Premise 4.1(iv) and since projq(c) 2 �B(q) due to the de�nition

of computation, we have w 2 LB(p). Hence, we can construct an in�nite computation c0 2 C(p; t)
such that projt(c

0) = projt(c). As a consequence, also c0 is unsuccessful.

Thus, :(pmustCL t) and, further, p vmust
CL q, as desired.

A.4. Proof of Theorem 4.9. For establishing the \=)" direction, let p j= �, i.e., w j= � for all

w 2 Lmax(p)[LB(p)[Ldiv(p). By Proposition 4.7 we also have w 2 Lmax(B
3
�)[LB(B

3
�)[Ldiv(B

3
�). We may

distinguish the following cases.

1. Case w 2 Ldiv(p): This case is taken care of by Lemma 4.8.

2. Case w 2 L�n(p) n Ldiv(B
3
�): Since p is a labeled transition system, w 2 L�n(p) is always a �nite

pre�x of a maximal trace or an in�nite (B�uchi) trace. Hence, we may conclude the existence of some

w0 2 A�[A1 such that w �w0 2 Lmax(B
3
�)[LB(B

3
�)[Ldiv(B

3
�). The other three inclusions, together
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with the fact that by construction, every divergent state s in B3
� satis�es Lmax(s) = A�, we obtain

w 2 L�n(B
3
�), as desired.

3. Case w 2 Lmax(p) n Ldiv(B
3
�): Hence, w 2 A� and, together with Proposition 4.7, w 2 Lmax(B

3
�).

4. Case w 2 LB(p) n Ldiv(B
3
�): Then, w 2 A1, and as a consequence of Proposition 4.7, w 2 LB(B

3
�).

Thus the language inclusions stated in equations (i) through (iv) are valid.

For proving the \(=" direction, assume that p 6j= �, i.e., 9w 2 Lmax(p) [ LB(p) [ Ldiv(p): w 6j= �. By

Proposition 4.7 we also know w =2 Lmax(B
3
�), w =2 LB(B

3
�), and w =2 Ldiv(B

3
�). We distinguish the following

cases.

1. Case w 2 Lmax(p): Then, w 2 Lmax(p) n Ldiv(B
3
�). However, w =2 Lmax(B

3
�), which contradicts

Inclusion (iii).

2. Case w 2 LB(p): Hence, w 2 LB(p) n Ldiv(B
3
�). However, w =2 LB(B

3
�), which is a contradiction to

Inclusion (iv).

3. Case w 2 Ldiv(p): But w =2 Ldiv(B
3
�), which contradicts Inclusion (i).

Thus, direction \(=" holds, as desired.
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